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Abstract

For a function given by contour integral the two types (conventions) of asymptotic repre-
sentations are considered: the usual representation by asymptotic series in inverse powers of
large parameter and the special division of contour integral in contributions of high and low
saddle points. It is shown that the width of the recessive term formation zone (Stokes strip)
in the second convention is determined by uncertainty relation and is much less than the zone
width in the first convention. The reasons of such a difference is clarified. The results of
the work are useful for understanding of formation region of the exponentially small process
arising on the background of the strong one.

1 Introduction

Many physical quantities are represented by contour integrals depending on two (or more) real
parameters:

F(z)=A / dtel ), (1)
C

z is one complex or a couple of two real parameters, v and a. The asymptotic representation of
these integrals are considered when one of the parameters, v, tends to infinity where the integral
has essential singularity, while another parameter, a, is near the Stokes line [1] where a = 0.
We restrict ourselves to the case when f(¢,2) in (1) has only two saddle points t,, ¢, where
f'(t1,2,2) = 0, and denote

f2(2) = f(t, 2), {I,z(z) = f"(t1,2,2). (2)
Then the asymptotic representation consists of two terms:

F=D+4R, D~e® Raig(z)e®, »»1. (3)

The main (dominant) one ~ e/2 and the exponentially small relatively to it (recessive) one ~ igelt,
Re(f: — f1) > 1 when v > 1.

Qualitative distinction of the two terms lies in the different rates of change of their phases
Imf; 2(e) with a:

inafe) = ~ZERAD 4 0) % 0n0), “
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Then from physical point of view D and R are the dominant and recessive waves with different
frequencies w, and wy . Another qualitative distinction is the appearance (or disappearance) of R
when o crosses the Stokes line a = 0. This appearance takes place in a certain interval Aa which
may be called the Stokes line width [2,3,4]. According to these authors the switching function of
recessive term coincides with error-function

g(a) = %erfc(w) - % / ~ dee~, (5)

w

where w = w(a) is a certain odd function of a, depending on convention [4] about dominant
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Figure 1:
term. The interval A« defined by the condition

lw(a)] <1 — Aa (6)
may be called the Stokes line width.

2 First convention about dominant and recessive terms

The 1-st convention [2,4] is based on asymptotic series expansion. Consider it on the example of
standard Airy function expansion (5]

| . n = 2
Ai(e) = & [ el o YTED S 0y (<0) 7, fargel <
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Figure 2:

Near the upper Stokes line z=|z|e/(2"/3+2) _¢ — 2)2[3/2¢%3a/2, According to the 1-st convention
the dominant wave S,, is formed by asymptotic series trancated near its least term, while the
recessive wave R, is represented by the remainder:

Ai(2) = Spn(2) + Rn(2) =

Ve ¢ '3 &, 2% qoo . oy —2m
= sz:%c,;(—() = [T dtfa(t) [Al()Ai(teF) -

~Ai(t)Ai(ze™ )], (8)

fn(t) = (=)™ /Fmeal™™ V2~ m = m(z) - number of the least term. For z > 1 the
m = m(z) > 1 and it is possible to find the asymptotic expression for R(z). The investigation
shows that for asymptotic series whose terms behave with number & as

I(ak + b)(cz)™* (9)
the ratio
}Z'"(z) ~ l hi-f
5 (2) z2erfc(§)e , (10)
where
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So the recessive wave is switched on when || > 1, or when the phase difference of dominant
and recessive waves becomes large:

IIm(fi — f2)| 2 \/2Re(f2 - f1) > 1. (12)

3 Second convention and uncertainty relation

The 2-nd convention [4] based on contour integral representation and dividing contour integral at
the height of recessive saddle. The dominant and recessive terms of F(z) are nothing else than
contributions of high and low saddles of the integrand. If ¢, and t; are the high and low saddle
points and z is near the Stokes line then the steepest decent lines going over the t; and t; (SDL,
and SDL,) on the complex t-plane are represented on the fig.3 together with the level line (LL;)
of low saddle point ;.

Figure 3:

The point t.=t.(z) on the intersection of SDL, and LL, is a root of egs.:

Imf(t,z) = Imfs,
Ref(t,z) = Refy. (13)

The 2-nd convention' defines the dominant D and recessive R terms of F' = D + R as integrals
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t. t”w
D(z) =4 [ dte!®,  R(z)=a [T dtefen (14)
oo te

Using in R the Taylor expansion for f(t,z) near saddle point ¢,

1,,:
flt,2) = fi +§f,’(t—t1)2+... (15)
we obtain
R(2) ~ A‘f_—2,:ref‘ . lerfc(w), (16)
h 2
where

w(e) = /i Im(f; ~ f2) (17)

is a complex function of a. Hence, the switching function g(a) is complex and is given by a Fresnel
type integral. The recessive wave switches on or off when |w| > 1 or

lIm(f; — f2)| > 1. (18)

It is very natural condition: the phase difference of dominant and recessive waves is of the order
of 1 or greater.
Near the Stokes line the phase is linear function of a:

Imfy2(a) = Imfy5(0) — w; 2(0) - + ..., (19)
and

Im(fi—fo)=Aw-a+..., Aw=wy(0)—w,(0), (20)

as on the Stokes line Imf,(0)=Imf,(0). Two waves may be distinguished only outside of the
Stokes line (Stokes strip)

Im(fi — f2)| 21 or Aw-Aa>1, (21)
when uncertainty relation is fulfilled. That is why the Stokes line width
A L (22)
“ Aw

may be called natural.
In the first convention, where

F=35,+R,, (23)

due to condition(12) or

Aw-Aa > /2Re(fo - fi) > 1 (24)

the Stokes line width is much greater than natural
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2Re(f2 — f1) 1
Aa ~ Aw > EJ_ (25)

The slower formation of wave R,, in comparison with R is caused by the fact that the last

vm ~ /2Re(f — f1) > 1.terms in Sp are coherent to R,, and the disentanglement occurs

slowly. This coherence disappears when a goes out of the more wider interval Aa ~ /m/Aw
than natural one and then all recessive properties are concentrated in Ry,.

4 T-parity and asymptotic expansions

T-transformation consists of the change @ — —a and the complex conjugation. We consider here
only the important case when functions f,2 in (2) satisfy the conditions

fiala) = fla(—a)= fiz(a), w(a) = w'(—a)= —w(a), (26)

and dominant wave D goes into itself, D — D + 6, up to unimportant phase factor and exponen-
tially small additional term . One can say conditionally that D has positive T-parity. At the
same time

R~ ig(w)e't — —ig(—w)e'h (27)

and does not have definite T-parity inside the Stokes strip because

9(-w) =1 - g(w). (28)
Yet outside the Stokes strip, when |w| > 1,

. fl_w2
: nol e /(2/7w), Rew > 1,
ig(w)e™ ~ { ieh +ieh=v" /(2\/7w), Rew < —L. (29)

Then before Stokes strip the R is 2y/7|w| times less than its value Rs on the Stokes line, does
not change at T-inversion and has the phase of dominant wave shifted by the arg(iw™'), as
fi —w?=Refi+i:Imf,. After the Stokes strip the wave R =~ 2Rs, has the proper phase Imf, +7/2,
changes its sign at T-inversion and is accompanied by small additional term of the same type as
R itself was before the Stokes strip.

Therefore the Stokes strip is the forming region for recessive wave with frequency w, # wp and
negative T-parity.

As to behaviour of dominant and recessive waves at T-transformation in the representation
F=S,, + R, then for the examples considered in [4] the S; transforms into itself up to the same
factor as for D but without any additional term 4,i.e. Sy, — Sy, while the R,, behaves according
to (29) with the change of w by real ¢, see (11). Therefore the phase of forming wave R,, equals
to Imf, + /2 and its T-parity changes from positive to negative value being indefinite inside the
Stokes strip. As D=5y, + R» — R, the additional term é having indefinite T-parity inside the wide
Stokes strip vanishes outside it as § ~ e~ (2, /7€
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5 Stokes line width and the method of osculating param-
eters

It is instructive to see the appearance of Stokes width in the method of osculating parameters.
According to this method the particular solution y(#) of the differential equation of the second
order with large parameter v is sought as a superposition of quasiclassical solutions * f (8) with
the correcting coefficient functions a4 (6) defined by the relations

y(0) = a4 (6) *£(6) +a-(8) ~ f(6), (30)
y'(6) = a1 (6) T £(8) + a-(8) ~ £(8), (31)

and boundary condition
a4(—00) =1, a_(—o00) =0. (32)

The latter means that the solution in question is ;y(8). As a1(6) are not differentiated in eq.(31)
the differential equation of the second order is reduced to the system of two differential equations
of the first order. This is sometimes useful for seeking out the appropriate approximation.

In physical literature there is a tendency to treat the two terms on the r.h.s. of (30) as two
waves with + frequencies for arbitrary 8 and not only for § — +oo (see [6] and references therein).
This is done on the ground that quasiclassical solutions * f conserve the sign of frequency and
the factors a4 (6) should only correct the solutions. Yet this is true only in the case when * f(8),
describing the strong wave, is taken with the accuracy up to the amplitude a_(8) of the weak wave
a—(0) ~ f(8), which under considered condition is exponentially small, for example a_(8) ~ e=™.

To see this we note preliminarily that as follows from (31,32)

ax(8) = *(y(6) ¥/'(6) - ¥'(6) ¥ £(9)) /D,

D = *f-f~ [t
We use now as an example the parabolic cylinder function y(0)=CD,~,,_1/2(—e""'/“2\/170). The
constant C is fixed by the condition a;(—oco) = 1. The first terms of the asymptotic expansion of

y(0) in power series in #~! can be obtained by Darwin method [7].
For the n-th approximation we have

(33)

Ya(0) =€t T f= tf S(6) = —v(8V1 + 62 + Arshd), (34)
On = i(z’u)'kckw), co = —iln(l + 6%).
k=0

Here c,, are the real functions of 8, bounded for ¥ > 1 together with their derivatives and satisfying
the relation

cx(—8) = (=1)Fci(6).

It follows from (33,34) that a_(6) ~ f.(8) consists of positive- and negative-frequency terms which
have the form
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_ e 4(0)
o-l6) 10) = At
_ie—rue—is-l-ao (1 + O(U-l)) . (35)

As seen from here a_ ~ f becomes approximately the negative-frequency wave only when the
first term on the r.h.s. is much smaller than the second one:

'nt1(6)

(1+06™) -

Ll e 36
W ey (3)

In notation of [8]
In(8) = —=2(—iv)*+ihg, X 32, (37)

One can show that for 6 3> 1 the function ¢, (8) = a,2"2"0~2*"!, a, = 2" 'I'(n+1), n > 1. Then
the condition (36) takes the form

2v 4

So for n ~ v > 1 we have 82 > 1. It is seen that with each successive step in approximation
for % f, the width, in which positive- and negative-frequencies are not separated, shrinks quickly,
but only at the step n ~ v the width approaches the barrier one — a physically reasonable result.

1
n42
0> L [Mew] . (38)
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